Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1999 Mar;9(2):188-95.
doi: 10.1093/cercor/9.2.188.

Differential regulation of connexin 26 and 43 in murine neocortical precursors

Affiliations
Comparative Study

Differential regulation of connexin 26 and 43 in murine neocortical precursors

K S Bittman et al. Cereb Cortex. 1999 Mar.

Abstract

Proliferating cells of the developing murine neocortex couple together into clusters during neurogenesis. Previously, we have shown that these clusters contain neural precursors in all phases of the cell cycle except M phase, and that they extend a nestin-expressing process from the cluster to the pial surface. In addition, coupling within neocortical cell clusters is a dynamic process related to the cell cycle, with maximal coupling in S/G2 phase, uncoupling in M phase and then recoupling during G1 and S phases of the cell cycle. In the present study, we use immunohistochemistry to demonstrate that cycling neocortical cells as well as radial glial cells express the gap junction proteins connexin 26 and connexin 43. Furthermore, we demonstrate that biocytin labeled clusters extend processes to the pial surface that express the glial cell antigen RC2. Lastly, by combining bromodeoxyuridine and connexin immunohistochemistry on acutely dissociated neocortical cells, we show that the percentage of cycling cells immunoreactive to connexin 26 and connexin 43 changes through the cell cycle. These results indicate that radial glial cells as well as neural precursors couple into clusters, and suggest that through differential regulation of connexins, neocortical precursors may compartmentalize as they progress through the cell cycle.

PubMed Disclaimer

Publication types

LinkOut - more resources