Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Mar;13(1):51-64.
doi: 10.1016/s0268-960x(99)90023-1.

Dendritic cells: development, function and potential use for cancer immunotherapy

Affiliations
Review

Dendritic cells: development, function and potential use for cancer immunotherapy

D Avigan. Blood Rev. 1999 Mar.

Abstract

Dendritic cells (DC) are potent antigen presenting cells that are essential for the initiation of primary immune responses. They richly express MHC, costimulatory and adhesion molecules necessary for the stimulation of naive T cell populations. Dendritic cells are located at sites of antigen capture where they demonstrate phagocytic capacity and subsequently migrate to lymphatic areas for antigen presentation. Their phenotypic and functional characteristics are intimately linked to their stage of maturation. The hematopoietic development of dendritic cells is distinct and may follow several precursor pathways some closely linked to monocytes. Generation of large numbers of cells for potential clinical use has recently been accomplished through the in vitro culturing of progenitors with cytokines. The use of dendritic cell vaccines for cancer immunotherapy has emerged as an exciting new focus of investigation. Various strategies have been adopted to introduce tumor antigens into dendritic cells so that they may be more effectively presented to T cells in the context of costimulation. Animal models demonstrate that dendritic cell tumor vaccines reverse T-cell anergy and result in subsequent tumor rejection. Incorporating the expanding knowledge of dendritic cell biology into vaccine design is essential for the generation of effective immunotherapy for cancer patients.

PubMed Disclaimer

LinkOut - more resources