Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 May;159(5 Pt 1):1469-76.
doi: 10.1164/ajrccm.159.5.9808063.

Nitric oxide reduces the sequestration of polymorphonuclear leukocytes in lung by changing deformability and CD18 expression

Affiliations

Nitric oxide reduces the sequestration of polymorphonuclear leukocytes in lung by changing deformability and CD18 expression

Y Sato et al. Am J Respir Crit Care Med. 1999 May.

Abstract

Nitric oxide (NO) influences polymorphonuclear leukocytes (PMN)-endothelial cell interactions. The aim of this study was to evaluate this effect in the lung and investigate this mechanism. PMN sequestration in the lung was evaluated in vivo after the infusion of complement fragments. Rabbits (n = 9) that inhaled 40 ppm of NO were compared with control rabbits (n = 9) over a 2-h period following infusion of complement fragments. Circulating PMN counts immediately decreased after infusion of complement fragments in both groups followed by a recovery to baseline. This recovery was maintained in the NO-treated group compared with the control rabbits (p < 0.05). NO reduced PMN sequestration in the lung measured by both arteriovenous PMN difference across the lung (p < 0.01) and the myeloperoxidase (MPO) content of the lung tissue (p < 0.01). NO had no effect on the complement fragments-induced PMN release from the bone marrow. In vitro studies showed that NO partially inhibited F-actin assembly (p < 0.01) reduced the change in deformability (p < 0.05) and inhibited CD18 upregulation (p < 0.05) but had no effect on the L-selectin shedding of PMN stimulated by complement fragments. We conclude that NO reduces the sequestration of activated PMN by reducing deformability change via inhibition of F-actin assembly and inhibiting the upregulation of CD18.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources