Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 1999 Jan;16(1):55-61.
doi: 10.1046/j.1464-5491.1999.00005.x.

Magnetic resonance imaging techniques demonstrate soft tissue damage in the diabetic foot

Affiliations
Clinical Trial

Magnetic resonance imaging techniques demonstrate soft tissue damage in the diabetic foot

P D Brash et al. Diabet Med. 1999 Jan.

Abstract

Aims: Our objective was to assess the qualitative soft tissue changes which occur in the diabetic neuropathic foot, which may predispose to ulceration, using a specific magnetic resonance imaging (MRI) contrast sequence, magnetization transfer (MT) which produces contrast based on exchange between water bound to macromolecules (e.g. collagen) and free water (e.g. extracellular fluid).

Methods: The first metatarsal head of 19 diabetic neuropathic subjects and 11 diabetic non-neuropathic controls was studied using a 'targeted' radiofrequency coil. Neuropathy was classified using vibration perception threshold (VPT) (< or > 25 V), cold threshold (< 1 degree C or > 4 degrees C) and Michigan neuropathy score (< 5 or > 15). Peripheral vascular disease was excluded. Results were expressed as percentage of tissue MT activity in a cross-sectional area. At autopsy full thickness biopsies were taken from the plantar fat pad of 10 unrelated subjects with diabetic neuropathy.

Results: Healthy muscle displays high MT activity, whereas adipose tissue induces little activity. Muscle MT activity was considerably reduced (75+/-20%, 30+/-24%, P<0.001) and fat pad MT activity was considerably increased in subjects with neuropathy (37+/-17% 68+/-21%, P<0.001). Muscle fibre atrophy decreases MT activity, whereas fibrous infiltration of the fat pad increases MT activity, fibro-atrophic post-mortem histological changes were found in the plantar fat pads of all neuropathic subjects examined (n = 10).

Conclusions: Changes in MT activity reflect qualitative structural changes which this study reveals are extensive in the diabetic neuropathic foot. Fibrotic atrophy of the plantar fat pad may affect its ability to dissipate the increased weight-bearing forces associated with diabetic neuropathy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources