Introduction of antigenic phospholipids into the plasma membrane of mammalian cells: organization and antibody-induced lipid redistribution
- PMID: 103095
- PMCID: PMC392999
- DOI: 10.1073/pnas.75.11.5529
Introduction of antigenic phospholipids into the plasma membrane of mammalian cells: organization and antibody-induced lipid redistribution
Abstract
Phosphatidylethanolamine bearing the 2,4,6-trinitrophenyl hapten was introduced into the surface membrane of mammalian fibroblasts by incubating the cells with small unilamellar vesicles containing this hapten-conjugated lipid. Consistent with integration of the antigen into the plasma membrane lipid bilayer, the exogenously supplied lipid was observed by immunofluorescence to diffuse rapidly (D greater than or equal to 0.6 X 10(-8) cm2/sec) over the surface of polykaryons formed between vesicle- and non-vesicle-treated cells. Association of the exogenous lipids with cells via adsorption of vesicles to the plasma membrane was rigorously excluded by a combination of ultrastructural and immunofluorescence studies. The distribution of the integrated antigenic lipid in the plasma membranes of vesicle-treated cells was followed by immunofluorescence microscopy. The exogenously supplied hapten-conjugated phospholipid was observed to be uniformly distributed and remained so for up to 1 hr at 37 degrees C. However, upon the addition of bivalent, but not monovalent, antihapten antibodies, the phospholipid underwent a rapid temperature-dependent redistribution, forming small patches that eventually coalesced into one or more large aggregates. This unexpected finding is discussed in terms of the mode of insertion of the lipid into the cell surface and the possible mechanisms by which bivalent ligands might alter the mobility and distribution of cell surface phospholipids.
Similar articles
-
Specificity of memory cells raised against trinitrophenyl-conjugated syngeneic cells.Proc Natl Acad Sci U S A. 1979 Apr;76(4):1537-41. doi: 10.1073/pnas.76.4.1537. Proc Natl Acad Sci U S A. 1979. PMID: 221897 Free PMC article.
-
Capping of a phospholipid analog in the plasma membrane of lymphocytes.Cell. 1981 Jan;23(1):105-12. doi: 10.1016/0092-8674(81)90275-0. Cell. 1981. PMID: 7214523
-
Interaction of antibodies with liposomes bearing fluorescent haptens.Biochim Biophys Acta. 1984 Oct 3;776(2):217-27. doi: 10.1016/0005-2736(84)90211-6. Biochim Biophys Acta. 1984. PMID: 6477908
-
Osmotic swelling of vesicles: its role in the fusion of vesicles with planar phospholipid bilayer membranes and its possible role in exocytosis.Annu Rev Physiol. 1986;48:163-74. doi: 10.1146/annurev.ph.48.030186.001115. Annu Rev Physiol. 1986. PMID: 2423021 Review.
-
Organization of glycosphingolipids in bilayers and plasma membranes of mammalian cells.Annu Rev Biophys Biophys Chem. 1985;14:361-86. doi: 10.1146/annurev.bb.14.060185.002045. Annu Rev Biophys Biophys Chem. 1985. PMID: 2988578 Review.
Cited by
-
Specificity of memory cells raised against trinitrophenyl-conjugated syngeneic cells.Proc Natl Acad Sci U S A. 1979 Apr;76(4):1537-41. doi: 10.1073/pnas.76.4.1537. Proc Natl Acad Sci U S A. 1979. PMID: 221897 Free PMC article.
-
Antibodies bound to lipid haptens in model membranes diffuse as rapidly as the lipids themselves.Proc Natl Acad Sci U S A. 1979 Sep;76(9):4177-9. doi: 10.1073/pnas.76.9.4177. Proc Natl Acad Sci U S A. 1979. PMID: 291959 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
