Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 May 14;274(20):13790-9.
doi: 10.1074/jbc.274.20.13790.

Macrophage enrichment with the isoflavan glabridin inhibits NADPH oxidase-induced cell-mediated oxidation of low density lipoprotein. A possible role for protein kinase C

Affiliations
Free article

Macrophage enrichment with the isoflavan glabridin inhibits NADPH oxidase-induced cell-mediated oxidation of low density lipoprotein. A possible role for protein kinase C

M Rosenblat et al. J Biol Chem. .
Free article

Abstract

Macrophage-mediated oxidation of low density lipoprotein (LDL) is considered to be of major importance in early atherogenesis; therefore, intervention means to inhibit this process are being extensively studied. In the present study, we questioned the ability of the isoflavan glabridin (from licorice) to accumulate in macrophages and to affect cell-mediated oxidation of LDL. We first performed in vitro studies, using mouse peritoneal macrophages (MPMs) and the J-774 A.1 macrophage-like cell line. Both cells accumulated up to 1.5 micrograms of glabridin/mg of cell protein after 2 h of incubation, and this process was time- and glabridin dose-dependent. In parallel, in glabridin-enriched cells, macrophage-mediated oxidation of LDL was inhibited by up to 80% in comparison with control cells. Glabridin inhibited superoxide release from MPMs in response to phorbol 12-myristate 13-acetate, or to LDL when added together with copper ions, by up to 60%. Translocation of P-47, a cytosolic component of NADPH oxidase to the plasma membrane was substantially inhibited. In glabridin-enriched macrophages, protein kinase C activity reduced by approximately 70%. All of the above effects of glabridin required the presence of the two hydroxyl groups on the flavonoid's B phenol ring. In order to assess the physiological significance of these results, we next performed in vivo studies, using the atherosclerotic apolipoprotein E-deficient (E0) mice. MPMs harvested from glabridin-treated E0 mice (20 micrograms/mouse/day for a period of 6 weeks) demonstrated reduced capability to oxidize LDL by 80% in comparison with placebo-treated mice. This latter phenomenon was associated with a reduction in the lesion oxysterols and a 50% reduction in the aortic lesion size. We thus conclude that glabridin accumulation in macrophages is associated with reduced cell-mediated oxidation of LDL and decreased activation of the NADPH oxidase system. These phenomena could be responsible for the attenuation of atherosclerosis in E0 mice, induced by glabridin.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources