Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 May;13(5):787-96.
doi: 10.1210/mend.13.5.0274.

Enhancement of insulin-like growth factor signaling in human breast cancer: estrogen regulation of insulin receptor substrate-1 expression in vitro and in vivo

Affiliations

Enhancement of insulin-like growth factor signaling in human breast cancer: estrogen regulation of insulin receptor substrate-1 expression in vitro and in vivo

A V Lee et al. Mol Endocrinol. 1999 May.

Abstract

Cross-talk between insulin-like growth factor (IGF)- and estrogen receptor (ER)-signaling pathways results in synergistic growth. We show here that estrogen enhances IGF signaling by inducing expression of three key IGF-regulatory molecules, the type 1 IGF receptor (IGFR1) and its downstream signaling molecules, insulin receptor substrate (IRS)-1 and IRS-2. Estrogen induction of IGFR1 and IRS expression resulted in enhanced tyrosine phosphorylation of IRS-1 after IGF-I stimulation, followed by enhanced mitogen-activated protein kinase activation. To examine whether these pathways were similarly activated in vivo, we examined MCF-7 cells grown as xenografts in athymic mice. IRS-1 was expressed at high levels in estrogen-dependent growth of MCF-7 xenografts, but withdrawal of estrogen, which decreased tumor growth, resulted in a dramatic decrease in IRS-1 expression. Finally, we have shown that high IRS-1 expression is an indicator of early disease recurrence in ER-positive human primary breast tumors. Taken together, these data not only reinforce the concept of cross-talk between IGF- and ER-signaling pathways, but indicate that IGF molecules may be critical regulators of estrogen-mediated growth and breast cancer pathogenesis.

PubMed Disclaimer

Publication types

MeSH terms