Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 May;22(1):98-101.
doi: 10.1038/8807.

Acetylated histones are associated with FMR1 in normal but not fragile X-syndrome cells

Affiliations

Acetylated histones are associated with FMR1 in normal but not fragile X-syndrome cells

B Coffee et al. Nat Genet. 1999 May.

Erratum in

  • Nat Genet 1999 Jun;22(2):209

Abstract

Mutation of FMR1 results in fragile X mental retardation. The most common FMR1 mutation is expansion of a CGG repeat tract at the 5' end of FMR1, which leads to cytosine methylation and transcriptional silencing. Both DNA methylation and histone deacetylation have been associated with transcriptional inactivity. The finding that the methyl cytosine-binding protein MeCP2 binds to histone deacetylases and represses transcription in vivo supports a model in which MeCP2 recruits histone deacetylases to methylated DNA, resulting in histone deacetylation, chromatin condensation and transcriptional silencing. Here we demonstrate that the 5' end of FMR1 is associated with acetylated histones H3 and H4 in cells from normal individuals, but acetylation is reduced in cells from fragile X patients. Treatment of fragile X cells with 5-aza-2'-deoxycytidine (5-aza-dC) resulted in reassociation of acetylated histones H3 and H4 with FMR1 and transcriptional reactivation, whereas treatment with trichostatin A (TSA) led to almost complete acetylated histone H4 and little acetylated histone H3 reassociation with FMR1, as well as no detectable transcription. Our results represent the first description of loss of histone acetylation at a specific locus in human disease, and advance understanding of the mechanism of FMR1 transcriptional silencing.

PubMed Disclaimer

Publication types

MeSH terms