Tissue-specific differential repression of gene expression by a dominant negative mutant of thyroid hormone beta1 receptor
- PMID: 10319950
- DOI: 10.1089/thy.1999.9.411
Tissue-specific differential repression of gene expression by a dominant negative mutant of thyroid hormone beta1 receptor
Abstract
Resistance to thyroid hormone (RTH) is a genetic disease caused by the mutations of the thyroid hormone beta receptor (TRbeta) gene, producing receptors with a dominant negative action. The present study addressed the question as to whether tissue-specific factors modulate the dominant negative function in different tissues. We prepared stably transfected pituitary GH3 (GH3-PV) and liver SK-Hep-1 (SK-Hep-1-PV) cell lines with a potent dominant negative mutant, PV. The growth hormone (GH) and the malic enzyme genes (ME) in GH3 and SK-Hep-1, respectively, are directly regulated by the thyroid hormone, 3,3,'5-triiodo-L-thyronine (T3). The ratio of the expressed PV/endogenous TRbeta1 proteins was approximately 20 and 5 for GH3-PV and SK-Hep-1-PV cells, respectively. However, the T3-activated expression of the GH gene in GH3-PV and ME gene in SK-Hep-1-PV was repressed by approximately 30% and 90%, respectively, indicating the lack of correlation of PV/TRpbeta1 protein ratio with the dominant negative potency of mutant PV. Furthermore, the synergistic effect of the pituitary-specific factor 1 on the TR-mediated GH promoter activity was not repressed by mutant PV. Taken together, these results suggest that the dominant negative effect of mutant TR is variable in the tissues studied.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources