Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Apr 2;264(1-3):97-100.
doi: 10.1016/s0304-3940(99)00189-5.

Voltage-sensitive Ca2+ channels, intracellular Ca2+ stores and Ca2+-release-activated Ca2+ channels contribute to the ATP-induced [Ca2+]i increase in differentiated neuroblastoma x glioma NG 108-15 cells

Affiliations

Voltage-sensitive Ca2+ channels, intracellular Ca2+ stores and Ca2+-release-activated Ca2+ channels contribute to the ATP-induced [Ca2+]i increase in differentiated neuroblastoma x glioma NG 108-15 cells

M Bräter et al. Neurosci Lett. .

Abstract

Activation of ionotropic P2X7 purinoreceptors in NG108-15 cells directly opens non-selective cation channels, leading to an increase in intracellular Ca2+ concentration ([Ca2+]i) and membrane depolarization and, hence, by indirect opening of voltage-stimulated Ca2+ channels (VSCC) to further increases of [Ca2+]i, whereas activation of the metabotropic P2Y receptor causes intracellular Ca2+ release. The quantitative contribution of Ca2+ entry and release to ATP-induced [Ca2+]i increase in differentiated NG108-15 cells is not known. Here we have investigated the Ca2+ influx and Ca2+ release components by studying [Ca2+]i in Fura-2-loaded cells and by using the following tools: nifedipine to block L-type VSCC, omega-conotoxin GVIa (omegaCT) to block N-type VSCC and thapsigargin to deplete intracellular Ca2+ stores. With 1.8 mM Ca2+ in the medium, ATP (600 microM) increased [Ca2+]i by 656 +/- 50 nM (n = 11). This response was reduced to 72% by nifedipine (50 microM), to 63% by omegaCT (1 microM), and to 31% by nifedipine and omegaCT in combination. Since nifedipine and omegaCT completely block VSCC in our model, the remaining 31% of [Ca2+]i increase could be caused by influx via P2X7-activated non-selective channels or by intracellular release mediated by P2Y receptors. When Ca2+-free medium was used to exclude Ca2+ influx, ATP (600 microM) increased [Ca2+]i by only 34 +/- 4 nM (n = 4), indicating that the majority of [Ca2+]i increase depends on Ca2+ influx. A similar rise by 37 +/- 4 nM (n = 4) was observed with the selective P2Y agonist UTP (150 microM). This small response was sensitive to thapsigargin and hence represents Ca2+ release. The remainder (i.e. total [Ca2+]i increase minus nifedipine-, omegaCT- and thapsigargin-sensitive [Ca2+]i increases) should, therefore, represent Ca2+ influx via P2X7 non-selective cation channels.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources