Thermodynamics of reversible and irreversible unfolding and domain interactions of glucoamylase from Aspergillus niger studied by differential scanning and isothermal titration calorimetry
- PMID: 10320360
- DOI: 10.1021/bi990185q
Thermodynamics of reversible and irreversible unfolding and domain interactions of glucoamylase from Aspergillus niger studied by differential scanning and isothermal titration calorimetry
Abstract
The stability of three forms of glucoamylase from Aspergillus niger has been investigated by differential scanning and isothermal titration calorimetry: Glucoamylase 1 (GA1), which consists of a catalytic domain and a starch-binding domain (SBD) connected by a heavily O-glycosylated linker region; glucoamylase 2 (GA2), which lacks SBD; and a proteolytically cleaved glucoamylase (GACD), which contains the catalytic domain and part of the linker region. The structures of the catalytic domain with part of the linker region and of SBD are known from crystallography and NMR, respectively, but the precise spatial arrangement of the two domains in GA1 is unknown. To investigate the stability of the three glucoamylase forms, we unfolded the enzymes thermally by differential scanning calorimetry (DSC). Aggregation occurs upon heating GA1 and GA2 at pH values between 2.5 and 5.0, whereas no aggregation is observed at higher pH (5.5-7.5). At all pH values, the catalytic domain of GA1 and GA2 unfolds irreversibly, while SBD unfolds reversibly in the pH range 5. 5-7.5 where aggregation does not occur. The unfolding of the catalytic domain of all glucoamylase forms seems to follow an irreversible one-step mechanism with no observable reversible intermediates on the experimental time scale. SBD of GA1 unfolds reversibly, and the ratio between the van't Hoff and calorimetric enthalpies is 1.4 +/- 0.1. Assignment of peaks of the DSC profile to the domains at pH 7.5 is achieved by using two different ligands: Acarbose, a very strong inhibitor that binds exclusively to the catalytic domain, and beta-cyclodextrin, a small starch analogue of which 2 molecules bind solely to the two binding sites present in SBD. Differences are seen in the unfolding processes of GA1 and GA2 since the former unfolds with one peak at all pH values, while the calorimetric trace of the latter can be resolved into more peaks depending on pH and the chemical composition of the buffers. In general, peaks corresponding to unfolding of GA2 are more complex than the peaks of GA1 and GACD. Some part of GA2 unfolds before the rest of the molecule which may correspond to the linker region or a particular early unfolding part of the catalytic domain. This leads to the conclusion that the structure of the GA2 molecule has a larger cooperative unfolding unit and is less stable than the structures of GA1 and GACD and that the C-terminal part of the linker region has a destabilizing effect on the catalytic domain.
Similar articles
-
Thermodynamics of binding of heterobidentate ligands consisting of spacer-connected acarbose and beta-cyclodextrin to the catalytic and starch-binding domains of glucoamylase from Aspergillus niger shows that the catalytic and starch-binding sites are in close proximity in space.Biochemistry. 1998 Jul 21;37(29):10446-52. doi: 10.1021/bi9807310. Biochemistry. 1998. PMID: 9671514
-
O-glycosylation and stability. Unfolding of glucoamylase induced by heat and guanidine hydrochloride.Eur J Biochem. 1992 Jul 15;207(2):661-70. doi: 10.1111/j.1432-1033.1992.tb17093.x. Eur J Biochem. 1992. PMID: 1633817
-
Differential scanning calorimetric studies on the domain structure of Aspergillus glucoamylase.J Biochem. 1995 May;117(5):1024-8. doi: 10.1093/oxfordjournals.jbchem.a124801. J Biochem. 1995. PMID: 8586614
-
[Non-native conformational states of immunoglobulins: thermodynamic and functional analysis of rabbit IgG].Biokhimiia. 1996 Feb;61(2):212-35. Biokhimiia. 1996. PMID: 8717493 Review. Russian.
-
Glucoamylase: structure/function relationships, and protein engineering.Biochim Biophys Acta. 2000 Dec 29;1543(2):275-293. doi: 10.1016/s0167-4838(00)00232-6. Biochim Biophys Acta. 2000. PMID: 11150611 Review.
Cited by
-
Combined spectroscopic and calorimetric characterisation of rubredoxin reversible thermal transition.J Biol Inorg Chem. 2006 Jan;11(1):73-81. doi: 10.1007/s00775-005-0055-8. Epub 2005 Dec 6. J Biol Inorg Chem. 2006. PMID: 16331403
-
Combination of isothermal titration calorimetry and time-resolved luminescence for high affinity antibody-ligand interaction thermodynamics and kinetics.Methods. 2012 Feb;56(2):145-53. doi: 10.1016/j.ymeth.2011.09.011. Epub 2011 Sep 20. Methods. 2012. PMID: 21964396 Free PMC article.
-
Starch-binding domain affects catalysis in two Lactobacillus alpha-amylases.Appl Environ Microbiol. 2005 Jan;71(1):297-302. doi: 10.1128/AEM.71.1.297-302.2005. Appl Environ Microbiol. 2005. PMID: 15640201 Free PMC article.
-
Stabilizing effect of various polyols on the native and the denatured states of glucoamylase.ScientificWorldJournal. 2013 Sep 18;2013:570859. doi: 10.1155/2013/570859. eCollection 2013. ScientificWorldJournal. 2013. PMID: 24163624 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources