Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 May;32(3):471-83.
doi: 10.1046/j.1365-2958.1999.01327.x.

Neutral trehalases catalyse intracellular trehalose breakdown in the filamentous fungi Aspergillus nidulans and Neurospora crassa

Affiliations
Free article

Neutral trehalases catalyse intracellular trehalose breakdown in the filamentous fungi Aspergillus nidulans and Neurospora crassa

C d'Enfert et al. Mol Microbiol. 1999 May.
Free article

Abstract

A cAMP-activatable Ca2+-dependent neutral trehalase was identified in germinating conidia of Aspergillus nidulans and Neurospora crassa. Using a PCR approach, A. nidulans and N. crassa genes encoding homologues of the neutral trehalases found in several yeasts were cloned and sequenced. Disruption of the AntreB gene encoding A. nidulans neutral trehalase revealed that it is responsible for intracellular trehalose mobilization at the onset of conidial germination, and that this phenomenon is partially involved in the transient accumulation of glycerol in the germinating conidia. Although trehalose mobilization is not essential for the completion of spore germination and filamentous growth in A. nidulans, it is required to achieve wild-type germination rates under carbon limitation, suggesting that intracellular trehalose can partially contribute the energy requirements of spore germination. Furthermore, it was shown that trehalose accumulation in A. nidulans can protect germinating conidia against an otherwise lethal heat shock. Because transcription of the treB genes is not increased after a heat shock but induced upon heat shock recovery, it is proposed that, in filamentous fungi, mobilization of trehalose during the return to appropriate growth is promoted by transcriptional and post-translational regulatory mechanisms, in particular cAMP-dependent protein kinase-mediated phosphorylation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Associated data

LinkOut - more resources