Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jan-Feb;64(1-2):28-34.
doi: 10.1016/s0039-128x(98)00105-6.

Rapid activation of endothelial nitric oxide synthase by estrogen

Affiliations

Rapid activation of endothelial nitric oxide synthase by estrogen

P W Shaul. Steroids. 1999 Jan-Feb.

Abstract

Estrogen is an important atheroprotective molecule that causes the rapid dilation of blood vessels by stimulating endothelial nitric oxide synthase (eNOS). There is also evidence that estrogen modulates airway epithelial NO production, thereby potentially affecting bronchial hyperresponsiveness. Studies in cultured endothelial and airway epithelial cells indicate that physiologic concentrations of estrogen cause rapid direct activation of eNOS that is unaffected by actinomycin D, but fully inhibited by estrogen receptor (ER) antagonism. Overexpression of ERalpha leads to marked enhancement of the acute response to estrogen, and this process is blocked by ER antagonism, it is specific to estrogen, and it requires the ERalpha hormone binding domain. In addition, the acute response of eNOS to estrogen can be reconstituted in COS-7 cells cotransfected with wild-type ERalpha and eNOS, but not by transfection with eNOS alone. Furthermore, the inhibition of calcium influx, or tyrosine kinases or MAP kinase prevents the stimulation of eNOS by estrogen, and estrogen causes rapid ER-dependent activation of MAP kinase. These findings indicate that the acute effects of estrogen on both endothelial and airway epithelial eNOS are mediated by ERalpha functioning in a novel, nongenomic manner to activate the enzyme via calcium-dependent, MAP kinase-dependent mechanisms.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources