Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 May 21;274(21):15080-4.
doi: 10.1074/jbc.274.21.15080.

Protein targeting to endoplasmic reticulum by dilysine signals involves direct retention in addition to retrieval

Affiliations
Free article

Protein targeting to endoplasmic reticulum by dilysine signals involves direct retention in addition to retrieval

H Andersson et al. J Biol Chem. .
Free article

Abstract

Dilysine signals confer localization of type I membrane proteins to the endoplasmic reticulum (ER). According to the prevailing model these signals target proteins to the ER by COP I-mediated retrieval from post-ER compartments, whereas the actual retention mechanism in the ER is unknown. We expressed chimeric membrane proteins with a C-terminal -Lys-Lys-Ala-Ala (KKAA) or -Lys-Lys-Phe-Phe (KKFF) dilysine signal in Lec-1 cells. Unlike KKFF constructs, which had access to post-ER compartments, the KKAA chimeras were localized to the ER by confocal microscopy and were neither processed by cis-Golgi-specific enzymes in vivo nor included into ER-derived transport vesicles in an in vitro budding assay, suggesting that KKAA-bearing proteins are permanently retained in the ER. The ER localization was nonsaturable and exclusively mediated by the dilysine signal because mutating the lysines to alanines led to cell surface expression of the chimeras. Although the KKAA signal avidly binds COP I in vitro, the ER retention by this signal does not depend on intact COP I in vivo because it was not affected in an epsilon-COP-deficient cell line. We propose that dilysine ER targeting signals can mediate ER retention in addition to retrieval.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources