Cellular and molecular remodeling in a heart failure model treated with the beta-blocker carteolol
- PMID: 10330254
- DOI: 10.1152/ajpheart.1999.276.5.H1678
Cellular and molecular remodeling in a heart failure model treated with the beta-blocker carteolol
Abstract
Broad-breasted white turkey poults fed furazolidone developed dilated cardiomyopathy (DCM) characterized by ventricular dilatation, decreased ejection fraction, beta1-receptor density, sarcoplasmic reticulum (SR) Ca2+-ATPase, myofibrillar ATPase activity, and reduced metabolism markers. We investigated the effects of carteolol, a beta-adrenergic blocking agent, by administrating two different dosages (0.01 and 10.0 mg/kg) twice a day for 4 wk to control and DCM turkey poults. At completion of the study there was 59% mortality in the nontreated DCM group, 55% mortality in the group treated with the low dose of carteolol, and 22% mortality in the group treated with the high dose of carteolol. Both treated groups showed a significant decrease in left ventricle size and significant restoration of ejection fraction and left ventricular peak systolic pressure. Carteolol treatment increased beta-adrenergic receptor density, and the high carteolol dose restored SR Ca2+-ATPase and myofibrillar ATPase activities, along with creatine kinase, lactate dehydrogenase, aspartate transaminase, and ATP synthase activities, to normal. These results show that beta-blockade with carteolol improves survival, reverses contractile abnormalities, and induces cellular remodeling in this model of heart failure.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous
