Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 May;276(5):H1715-23.
doi: 10.1152/ajpheart.1999.276.5.H1715.

Hypoperfusion-induced contractile failure does not require changes in cardiac energetics

Affiliations

Hypoperfusion-induced contractile failure does not require changes in cardiac energetics

K W Saupe et al. Am J Physiol. 1999 May.

Abstract

Decreasing coronary perfusion causes an immediate decrease in contractile function via unknown mechanisms. It has long been suspected that this contractile dysfunction is caused by ischemia-induced changes in cardiac energetics. Our goal was to determine whether changes in cardiac energetics necessarily precede the contractile dysfunction as one would expect if a causal relationship exists. In 14 isolated rat hearts, we gradually decreased coronary perfusion using a coronary perfusate with a normal hematocrit and normal concentrations of the major metabolic substrates. Using 31P NMR spectroscopy to measure ATP, phosphocreatine (PCr), Pi, and ADP concentrations ([ATP], [PCr], [Pi], [ADP]), pH, and amount of free energy released from ATP hydrolysis (|DeltaGATP|), we found that none of these variables changed significantly until several minutes after systolic pressure had significantly decreased. Even when developed pressure had decreased by over one-third, only very slight changes in [Pi], pH, and |DeltaGATP| had occurred, with no significant changes in [ATP], [PCr], or [ADP]. Additionally, the rate of high-energy phosphate transfer between ATP and PCr did not decrease enough during hypoperfusion to explain the contractile dysfunction. We conclude that nonenergetic factors are the dominant cause of the initial decrease in systolic function when myocardial perfusion is decreased.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources