Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Jul;357(7):925-35.
doi: 10.1515/bchm2.1976.357.2.925.

Biosynthetic labelling of membrane lipids of eukaryotic cells in tissue culture by a novel type of fluorescent fatty acids

Biosynthetic labelling of membrane lipids of eukaryotic cells in tissue culture by a novel type of fluorescent fatty acids

W Stoffel et al. Hoppe Seylers Z Physiol Chem. 1976 Jul.

Abstract

W-Anthryl labelled fatty acids with hydrocarbon chains of different lengths (C8, C11, C15) and different degrees of unsaturation have been incorporated into the membrane lipids of three different cell lines in tissue culture by addition of these 3H-labelled precursor fatty acids to the growth medium. The cell lines were baby hamster kidney cells (BHK 21), Chang liver cells and the RN6 cell line derived from a chemically induced Schwannoma tumor cell clone. Cell growth was normal. The quantitative analysis on the basis of radioactivity determinations demonstrated that the fluorescent-labelled fatty acids were introduced into the neutral lipid fraction (triglycerides, diglycerides, and cholesterol esters, all present in small amounts), but mainly into the phospholipid classes phosphatidylcholine, -ethanolamine and -serine, and to a lesser extent, as N-acyl component of sphingolipids (sphingomyelins, ceramides, mono- and diglycosylceramides). Cell fractionation studies indicated that the membranes of all subcellular particles were labelled with the fluorescent probes in their lipid moieties. These w-anthryl fatty acids are the first type of fluorescent lipid precursors which can be incorporated biosynthetically in vivo into membrane lipids of eukaryotic cells. The effective incorporation of the bulky fluorescent anthryl group in the terminal position of fatty acids of different chain lengths into the complex membrane lipids of the cell gives proff of 1) their uninhibited membrane transport, 2) their activation by the acyl-CoA synthetase and 3) their substrate properties for the O- acyl and N-acyl transferases in phospho- and sphingolipid biosynthesis.

PubMed Disclaimer

Similar articles