Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Apr;31(4):257-61.
doi: 10.1055/s-2007-978728.

Lactate stimulates insulin secretion without blocking the K+ channels in HIT-T15 insulinoma cells

Affiliations

Lactate stimulates insulin secretion without blocking the K+ channels in HIT-T15 insulinoma cells

H Akiyoshi et al. Horm Metab Res. 1999 Apr.

Abstract

To clarify the mechanism by which lactate affects insulin secretion, we investigated the effect of lactate on insulin secretion, cytosolic free Ca2+ ([Ca2+](i), the ATP sensitive K+ channel (K(ATP)) and the Ca2+-activated K+ channel (K(Ca)) in HIT-T15 cells, and the results were compared with those of glucose and glibenclamide. All three agents caused insulin secretion and increased [Ca2+](i), but the effects on the K+ channels were different. In cell-attached patch configurations, 10 mmol/l glucose blocked both the K(ATP) and KCa channels, while 100 nmol/l glibenclamide had no effect on KCa channels, but blocked K(ATP) channels. Lactate at a concentration of 10 mmol/l activated both the K(ATP) and KCa channels, not only in cell-attached, but also in inside-out patch configurations, indicating that the increase in [Ca2+](i) and secretion of insulin by lactate cannot be explained by the blocking of the K+ channels. Lactate, at concentrations of 10 mmol/l and 50 mmol/l decreased 45Ca2+ efflux, while glibenclamide increased the efflux. These results suggest that the lactate-induced Ca2+ increase is not due to the closing of K+ channels, but at least in part, to the suppression of Ca2+ efflux from HIT cells.

PubMed Disclaimer

MeSH terms