Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998;47(6):465-77.
doi: 10.1002/(SICI)1097-0282(1998)47:6<465::AID-BIP5>3.0.CO;2-#.

Cysteine-rich antimicrobial peptides in invertebrates

Affiliations
Review

Cysteine-rich antimicrobial peptides in invertebrates

J L Dimarcq et al. Biopolymers. 1998.

Abstract

Antimicrobial peptides are pivotal elements of the innate immune defense against bacterial and fungal infections. Within the impressive list of antimicrobial peptides available at present, more than half have been characterized in arthropods. Cysteine-rich antimicrobial peptides represent the most diverse and widely distributed family among arthropods and, to a larger extent, among invertebrates. Proeminent groups of cysteine-rich peptides are peptides with the CS alpha beta motif and peptides forming an hairpin-like beta-sheet structure. Although these substances exhibit a large structural diversity and a wide spectrum of activity, they have in common the ability to permeabilize microbial cytoplasmic membranes. Drosophila has proved a remarkable system for the analysis of the regulation of expression of gene encoding antimicrobial cysteine-rich peptides. These studies have unraveled the striking parallels that exist between insect immunity and innate immunity in mammals that point to a common ancestry of essential aspects of innate immunity.

PubMed Disclaimer

LinkOut - more resources