Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 May;105(5):2821-40.
doi: 10.1121/1.426898.

Sensitivity of human subjects to head-related transfer-function phase spectra

Affiliations

Sensitivity of human subjects to head-related transfer-function phase spectra

A Kulkarni et al. J Acoust Soc Am. 1999 May.

Abstract

Head-related transfer functions (HRTFs) for human subjects in anechoic space were modeled with modified phase spectra, including minimum-phase-plus-delay, linear-phase, and reversed-phase-plus-delay functions. The overall (wide-band) interaural time delay (ITD) for the modeled HRTFs was made consistent with that of the empirical HRTFs by setting the position-dependent, frequency-independent delay in the HRTF for the lagging ear. Signal analysis of the minimum-phase-plus-delay reconstructions indicated that model HRTFs deviate from empirical HRTF measurements maximally for contralateral azimuths and low elevations. Subjects assessed the perceptual validity of the model HRTFs in a four-interval, two-alternative, forced-choice discrimination paradigm. Results indicate that monaural discrimination performance of subjects was at chance for all three types of HRTF models. Binaural discrimination performance was at chance for the linear-phase HRTFs, was above chance for some locations for the minimum-phase-plus-delay HRTFs, and was above chance for all tested locations for the reversed-phase-plus-delay HRTFs. An analysis of low-frequency timing information showed that all of these results are consistent with efficient use of interaural time differences in the low-frequency components of the stimulus waveforms. It is concluded that listeners are insensitive to HRTF phase spectra as long as the overall ITD of the low-frequency components does not provide a reliable cue. In particular, the minimum-phase-plus-delay approximation to the HRTF phase spectrum is an adequate approximation as long as the low-frequency ITD is appropriate. These results and conclusions are all limited to the anechoic case when the HRTFs correspond to brief impulse responses limited to a few milliseconds.

PubMed Disclaimer

Publication types

LinkOut - more resources