Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 May 28;274(22):15828-36.
doi: 10.1074/jbc.274.22.15828.

Studies on the "insoluble" glycoprotein complex from human colon. Identification of reduction-insensitive MUC2 oligomers and C-terminal cleavage

Affiliations
Free article

Studies on the "insoluble" glycoprotein complex from human colon. Identification of reduction-insensitive MUC2 oligomers and C-terminal cleavage

A Herrmann et al. J Biol Chem. .
Free article

Abstract

The "insoluble" glycoprotein complex was isolated from human colonic tissue and mucin subunits were prepared following reduction. Antibodies raised against peptide sequences within MUC2 revealed that virtually all of this mucin occurs in the insoluble glycoprotein complex. In addition, reduction released a 120-kDa C-terminal MUC2 fragment, showing that proteolytic cleavage in this domain may occur and leave the fragment attached to the complex via disulfide bonds. The variable number tandem repeat region and the irregular repeat domain were isolated after trypsin digestion and shown to have molecular weights of 930,000 and 180,000, respectively, suggesting a molecular weight for the entire MUC2 monomer of approximately 1.5 million. Gel chromatography and agarose gel electrophoresis revealed several populations of MUC2 subunits, and analytical ultracentrifugation showed that these have molecular weights on the order of 2 million, 4 million, and 5 million, corresponding to monomers, dimers, and trimers, respectively. Agarose gel electrophoresis of subunits from individuals expressing both a "long" and a "short" MUC2 allele revealed a larger number of populations, consistent with the presence of short and long monomers and oligomers arising from permutations of the two types of monomers. In addition to disulfide bonds, MUC2 monomers are apparently joined by a "novel," reduction-insensitive bond.

PubMed Disclaimer

Publication types

LinkOut - more resources