Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 May 28;274(22):15857-64.
doi: 10.1074/jbc.274.22.15857.

Nitric oxide inhibits c-Jun DNA binding by specifically targeted S-glutathionylation

Affiliations
Free article

Nitric oxide inhibits c-Jun DNA binding by specifically targeted S-glutathionylation

P Klatt et al. J Biol Chem. .
Free article

Abstract

This study addresses potential molecular mechanisms underlying the inhibition of the transcription factor c-Jun by nitric oxide. We show that in the presence of the physiological sulfhydryl glutathione nitric oxide modifies the two cysteine residues contained in the DNA binding module of c-Jun in a selective and distinct way. Although nitric oxide induced the formation of an intermolecular disulfide bridge between cysteine residues in the leucine zipper site of c-Jun monomers, this same radical directed the covalent incorporation of stoichiometric amounts of glutathione to a single conserved cysteine residue in the DNA-binding site of the protein. We found that covalent dimerization of c-Jun apparently did not affect its DNA binding activity, whereas the formation of a mixed disulfide with glutathione correlated well with the inhibition of transcription factor binding to DNA. Furthermore, we provide experimental evidence that nitric oxide-induced S-glutathionylation and inhibition of c-Jun involves the formation of S-nitrosoglutathione. In conclusion, our results support the reversible formation of a mixed disulfide between glutathione and c-Jun as a potential mechanism by which nitrosative stress may be transduced into a functional response at the level of transcription.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources