alpha1-adrenergic receptor activation of c-fos expression in transfected rat-1 fibroblasts: role of Ca2+
- PMID: 10336529
alpha1-adrenergic receptor activation of c-fos expression in transfected rat-1 fibroblasts: role of Ca2+
Abstract
alpha1-Adrenergic receptors mediate mitogenic responses and increase intracellular free Ca2+ ([Ca2+]i) in vascular smooth muscle cells. Induction of c-fos is a critical early event in cell growth; expression of this gene is regulated by a number of signaling pathways including Ca2+. We wondered whether Ca2+ signaling plays a critical role in the induction of c-fos gene by alpha1-adrenergic receptors. Using stably transfected rat-1 fibroblasts, we confirmed that PE induced c-fos mRNA expression in a time- and dose-dependent manner, and also increased [Ca2+]i (measured with Fura-2 AM). These responses were blocked by the alpha1-adrenergic receptor antagonist doxazosin. Both intracellular Ca2+ chelation (using BAPTA/AM) and extracellular Ca2+ depletion (using EGTA) significantly inhibited PE-induced c-fos expression by alpha1A and alpha1B receptors. Brief (1-min) stimulation of alpha1A and alpha1B receptors with PE did not maximally induce c-fos expression, suggesting that a sustained increase in [Ca2+]i due to Ca2+ influx is required. The calmodulin (CaM) antagonists, R24571, W7, and trifluoperazine, but not the CaM-dependent protein kinases inhibitor KN-62, significantly inhibited c-fos induction by alpha1A and alpha1B receptors. Neither inhibition of protein kinase C nor inhibition of adenylyl cyclase modified c-fos induction by PE. These results suggest that alpha1-adrenergic receptor-induced c-fos expression in rat-1 cells is dependent on a Ca2+/CaM-associated pathway.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Miscellaneous