Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jun;289(3):1564-74.

Factors that enhance ethanol inhibition of N-methyl-D-aspartate receptors in cerebellar granule cells

Affiliations
  • PMID: 10336554

Factors that enhance ethanol inhibition of N-methyl-D-aspartate receptors in cerebellar granule cells

R L Popp et al. J Pharmacol Exp Ther. 1999 Jun.

Abstract

The objective of this study was to identify factors that influence ethanol (EtOH) inhibition of the N-methyl-D-aspartate receptor (NMDAR) in primary cultured cerebellar granule cells. Several factors contributing to the inhibitory effects of EtOH on NMDAR function were assessed using both whole-cell and perforated patch-clamp recordings. The NMDAR subunit composition was examined by Western blot analysis using NR2 subunit-specific antibodies and pharmacological manipulation with the NR2B-specific antagonist infenprodil. Western blot analysis indicated that NMDAR subunit composition changed from a combination of NR2A and NR2B containing NMDARs to primarily NR2A with increasing days in vitro (DIV). Although the NR2B subunit was detectable until 21 DIV, there was a significant decrease in ifenprodil sensitivity after 7 DIV. EtOH sensitivity did not change with an increasing DIV. A high concentration of glycine reversed EtOH inhibition of steady-state, but not peak, NMDA-induced current during whole-cell recordings. Significant glycine reversal of effects of a low concentration of EtOH on peak current was observed under perforated patch-clamp conditions. A 30-s EtOH pretreatment significantly enhanced EtOH inhibition of NMDA-induced peak current. Collectively, these results indicate that EtOH sensitivity of the NMDAR in primary cultured cerebellar granule cells is not related to subunit composition nor ifenprodil sensitivity, involves a kinetic interaction with glycine, and can be enhanced by a slowly developing transduction mechanism that occurs within tens of seconds.

PubMed Disclaimer

Publication types

MeSH terms