Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jun;262(2):541-6.
doi: 10.1046/j.1432-1327.1999.00402.x.

C-CAM-mediated adhesion leads to an outside-in dephosphorylation signal

Affiliations
Free article

C-CAM-mediated adhesion leads to an outside-in dephosphorylation signal

L Lucka et al. Eur J Biochem. 1999 Jun.
Free article

Abstract

The rat cell-cell adhesion molecule C-CAM, a member of the carcinoembryonic antigen family, was shown to be expressed in various isoforms, differing in the length of the cytoplasmic domain. The long isoform C-CAML inhibits the growth of different malignant cells. Several studies suggest that it is involved in the mechanism of signal transduction. So far no direct correlation between C-CAM function and C-CAM phosphorylation has been reported. In the present study we addressed the question of whether C-CAM-mediated adhesion is accompanied by changes in phosphorylation of the cytoplasmic domain of C-CAM. It was demonstrated that C-CAML is constitutively phosphorylated in adherent growing cells as well as in cells growing in suspension. In contrast, C-CAML-mediated cell aggregation is accompanied by a 40% reduction in C-CAML phosphorylation compared with nonaggregated cells. The same dephosphorylation was achieved by antibody-induced clustering of C-CAML in the plasma membrane. Phosphorylation and dephosphorylation indicate a C-CAM-mediated outside-in signalling induced by cell-cell adhesion.

PubMed Disclaimer

Publication types

LinkOut - more resources