Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 May;8(5):1152-9.
doi: 10.1110/ps.8.5.1152.

Amino acid substitutions at the subunit interface of dimeric Escherichia coli alkaline phosphatase cause reduced structural stability

Affiliations

Amino acid substitutions at the subunit interface of dimeric Escherichia coli alkaline phosphatase cause reduced structural stability

D C Martin et al. Protein Sci. 1999 May.

Abstract

The consequences of amino acid substitutions at the dimer interface for the strength of the interactions between the monomers and for the catalytic function of the dimeric enzyme alkaline phosphatase from Escherichia coli have been investigated. The altered enzymes R10A, R10K, R24A, R24K, T59A, and R10A/R24A, which have amino acid substitutions at the dimer interface, were characterized using kinetic assays, ultracentrifugation, and transverse urea gradient gel electrophoresis. The kinetic data for the wild-type and altered alkaline phosphatases show comparable catalytic behavior with k(cat) values between 51.3 and 69.5 s(-1) and Km values between 14.8 and 26.3 microM. The ultracentrifugation profiles indicate that the wild-type enzyme is more stable than all the interface-modified enzymes. The wild-type enzyme is dimeric in the pH range of pH 4.0 and above, and disassembled at pH 3.5 and below. All the interface-modified enzymes, however, are apparently monomeric at pH 4.0, begin assembly at pH 5.0, and are not fully assembled into the dimeric form until pH 6.0. The results from transverse urea gradient gel electrophoresis show clear and reproducible differences both in the position and the shape of the unfolding patterns; all these modified enzymes are more sensitive to the denaturant and begin to unfold at urea concentrations between 1.0 and 1.5 M; the wild-type enzyme remains in the folded high mobility form beyond 2.5 M urea. Alkaline phosphatase H370A, modified at the active site and not at the dimer interface, resembles the wild-type enzyme both in ultracentrifugation and electrophoresis studies. The results obtained suggest that substitution of a single amino acid at the interface sacrifices not only the integrity of the assembled dimer, but also the stability of the monomer fold, even though the activity of the enzyme at optimal pH remains unaffected and does not appear to depend on interface stability.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. Biochim Biophys Acta. 1960 Mar 11;38:470-83 - PubMed
    1. Chem Rev. 1997 Aug 5;97(5):1233-1250 - PubMed
    1. Biochemistry. 1991 Aug 6;30(31):7789-96 - PubMed
    1. J Mol Biol. 1991 Mar 20;218(2):449-64 - PubMed

LinkOut - more resources