Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Feb;31(1):7-14.
doi: 10.1023/a:1005499126939.

Structure and function of vacuolar Na+-translocating ATPase in Enterococcus hirae

Affiliations
Review

Structure and function of vacuolar Na+-translocating ATPase in Enterococcus hirae

Y Kakinuma et al. J Bioenerg Biomembr. 1999 Feb.

Abstract

A Na+-translocating ATPase was discovered in a gram-positive bacterium Enterococcus hirae. Our biochemical and molecular biological studies revealed that this Na+-ATPase belongs to the vacuolar-type enzyme. Purified Na+-ATPase consisted of nine subunits: NtpA, B, C, D, E, F, G, I, and K; reconstituted proteoliposomes showed ATP-driven electrogenic Na+ translocation. All these subunits were encoded by the ntp operon: ntpFIKECGABDHJ. The deduced amino acid sequences of the major subunits, A, B, and K (16 kDa proteolipid), were highly similar to those of A, B, and proteolipid subunits of vacuolar ATPases, although the similarities of other subunits were moderate. The ntpJ gene encoded a K+ transporter independent of the Na+-ATPase. Expression of this operon, encoding two transport systems for Na+ and K+ ions, was regulated at transcriptional level by intracellular Na+ as the signal. Two related cation pumps, vacuolar Na+-ATPase and F0F1, H+-ATPase, coexist in this bacterium.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources