Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1999 Jun;5(6):559-64.
doi: 10.1093/molehr/5.6.559.

Oestrogen receptor alpha and beta mRNA expression in human endometrium throughout the menstrual cycle

Affiliations
Comparative Study

Oestrogen receptor alpha and beta mRNA expression in human endometrium throughout the menstrual cycle

S Matsuzaki et al. Mol Hum Reprod. 1999 Jun.

Abstract

We examined the localization of oestrogen receptor (ER) beta mRNA in the human endometrium throughout the menstrual cycle using non-radioactive in-situ hybridization with Brigati-tailed oligonucleotides. The findings were compared with those of ERalpha in order to examine the possible biological significance of ERbeta in the human endometrium. Both ERalpha and ERbeta mRNA expression were detected in all major human uterine cell types, including glandular epithelial cells, stromal cells and smooth muscle cells of the uterine wall, at every menstrual cycle stage. However, ERalpha mRNA expression was more prominent than that of ERbeta in all cell types throughout the menstrual cycle. In proliferative phase endometrium, ERalpha mRNA was expressed in both glandular epithelial and stromal cells, while ERbeta mRNA was expressed predominantly in glandular epithelial cells. Although the same pattern was observed in the secretory phase, both the ERalpha and ERbeta mRNA expression was relatively weaker. These results suggest that oestrogenic effects occur predominantly through ERalpha, but that ERbeta may also play a role in the modulation of oestrogenic action, especially on glandular epithelial cells in the human endometrium throughout the menstrual cycle.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources