High-cell-density cultivation of microorganisms
- PMID: 10341426
- DOI: 10.1007/s002530051412
High-cell-density cultivation of microorganisms
Abstract
High-cell-density cultivation (HCDC) is required to improve microbial biomass and product formation substantially. An overview of HCDC is given for microorganisms including bacteria, archae and eukarya (yeasts). Problems encountered by HCDC and their possible solutions are discussed. Improvements of strains, different types of bioreactors and cultivation strategies for successful HCDC are described. Stirred-tank reactors with and without cell retention, a dialysis-membrane reactor, a gas-lift reactor and a membrane cyclone reactor used for HCDC are outlined. Recently modified traditional feeding strategies and new ones are included, in particular those for unlimited growth to very dense cultures. Emphasis is placed on robust fermentation control because of the growing industrial interest in this field. Therefore, developments in the application of multivariate statistical control, artificial neural networks, fuzzy control and knowledge-based supervision (expert systems) are summarized. Recent advances using Escherichia coli--the pioneer organism for HCDC--are outlined.
Similar articles
-
Upflow anaerobic sludge blanket reactor--a review.Indian J Environ Health. 2001 Apr;43(2):1-82. Indian J Environ Health. 2001. PMID: 12397675 Review.
-
Multi-stage high cell continuous fermentation for high productivity and titer.Bioprocess Biosyst Eng. 2011 May;34(4):419-31. doi: 10.1007/s00449-010-0485-8. Epub 2010 Dec 3. Bioprocess Biosyst Eng. 2011. PMID: 21127908
-
High cell density cultivation of recombinant yeasts and bacteria under non-pressurized and pressurized conditions in stirred tank bioreactors.J Biotechnol. 2007 Oct 31;132(2):167-79. doi: 10.1016/j.jbiotec.2007.06.010. Epub 2007 Jun 23. J Biotechnol. 2007. PMID: 17681630
-
Dialysis cultures.Appl Microbiol Biotechnol. 1998 Oct;50(4):403-14. doi: 10.1007/s002530051312. Appl Microbiol Biotechnol. 1998. PMID: 9830090
-
[Antistress cross-effects of extracellular metabolites of bacteria, archaea, and yeasts: a review].Prikl Biokhim Mikrobiol. 2013 Jul-Aug;49(4):333-44. doi: 10.7868/s0555109913040144. Prikl Biokhim Mikrobiol. 2013. PMID: 24455858 Review. Russian.
Cited by
-
Acetate formation during recombinant protein production in Escherichia coli K-12 with an elevated NAD(H) pool.Eng Life Sci. 2019 Sep 8;19(11):770-780. doi: 10.1002/elsc.201900045. eCollection 2019 Nov. Eng Life Sci. 2019. PMID: 32624970 Free PMC article.
-
Detecting cell lysis using viscosity monitoring in E. coli fermentation to prevent product loss.Biotechnol Prog. 2016 Jul 8;32(4):1069-76. doi: 10.1002/btpr.2292. Epub 2016 May 17. Biotechnol Prog. 2016. PMID: 27111912 Free PMC article.
-
Anthrax revisited: how assessing the unpredictable can improve biosecurity.Front Bioeng Biotechnol. 2023 Sep 19;11:1215773. doi: 10.3389/fbioe.2023.1215773. eCollection 2023. Front Bioeng Biotechnol. 2023. PMID: 37795173 Free PMC article.
-
Cost-effective large-scale expression of proteins for NMR studies.J Biomol NMR. 2018 Aug;71(4):247-262. doi: 10.1007/s10858-018-0179-0. Epub 2018 May 19. J Biomol NMR. 2018. PMID: 29779067
-
Flow Biocatalysis: A Challenging Alternative for the Synthesis of APIs and Natural Compounds.Int J Mol Sci. 2021 Jan 20;22(3):990. doi: 10.3390/ijms22030990. Int J Mol Sci. 2021. PMID: 33498198 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources