Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Nov 30;367(1):25-31.
doi: 10.1007/BF00583652.

Lingual blood flow and its hypothalamic control in the dog during panting

Lingual blood flow and its hypothalamic control in the dog during panting

H Krönert et al. Pflugers Arch. .

Abstract

1. The effects of increased ambient temperature (Ta) on blood-flow and -temperatures of the tongue were studied in the unanaesthetized dog. At Ta of 20 degrees C and a relative humidity (rh) of 30% the mean lingual blood flow was 11 ml-min-1 (0.15 ml-g-1-min-1) and the temperature difference between the lingual artery and vein (deltaTLAV) was 1.0 degrees C. Accordingly, a heat loss of 48.6 J-min-1 was calculated even for the dog breathing with the mouth closed. When Ta was elevated to 38 degrees C at constant rh, panting ensued. In parallel fashion lingual blood flow increased to 60.4 ml-min-1 (0.81 ml-g-1-min-1) in mean and to 74.7 ml-min-1 (0.99 ml-g-1-min-1) at peak rate of thermal tachypnoea (272 breaths-min-1). This flow increase resulted from a decrease in the local vascular resistance since the driving systemic pressure remained constant. It was accompanied by an increase in TLAV to 1.5 degrees C equivalent to a heat loss of 400.7J-min-1 in mean and 496.2J-min-1 at maximum respiratory rate. 2. The preoptic/anterior hypothalamic (PO/AH) region was heated with a water perfused thermode in urethane anaesthetized dogs at constant body temperature in order to study the relationship in time between the increase in lingual blood flow and the onset of thermal panting. Lingual blood flow was found to be 20 ml-min-1 at a respiratory rate of 60 breaths/min. During hypothalamic heating both respiratory rate and lingual blood flow increased markedly. At maximum respiratory rates (244 breaths-min-1) lingual blood flow reached a level of 60 ml-min-1. When perfusion of the thermode was stopped, both respiratory rate and lingual blood flow synchronously returned to control values within 5 min. Similar changes did not occur in dogs in which a ventilatory response failed to be elicited during hypothalamic heating. 3. The results suggest that the tongue contributes to the evaporative heat loss mechanism and they confirm the concept that panting, associated with increased lingual blood flow, is induced by a common autonomic outflow pattern which is mediated by the central mechanism controlling thermal homeostasis.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Am J Physiol. 1958 Jul;194(1):99-108 - PubMed
    1. J Appl Physiol. 1951 Nov;4(5):378-82 - PubMed
    1. J Physiol. 1954 Nov 29;126(2):347-58 - PubMed
    1. Pflugers Arch. 1973 Nov 26;344(2):133-48 - PubMed
    1. J Physiol. 1974 Apr;238(1):17-36 - PubMed