Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jun;140(6):2819-27.
doi: 10.1210/endo.140.6.6786.

Müllerian-inhibiting substance type II receptor expression and function in purified rat Leydig cells

Affiliations

Müllerian-inhibiting substance type II receptor expression and function in purified rat Leydig cells

M M Lee et al. Endocrinology. 1999 Jun.

Abstract

Müllerian-inhibiting substance (MIS), a gonadal hormone in the transforming growth factor-beta superfamily, induces Müllerian duct involution during male sexual differentiation. Mice with null mutations of the MIS ligand or receptor develop Leydig cell hyperplasia and neoplasia in addition to retained Müllerian ducts, whereas MIS-overexpressing transgenic mice have decreased testosterone concentrations and Leydig cell numbers. We hypothesized that MIS directly modulates Leydig cell proliferation and differentiated function in the maturing testis. Therefore, highly purified rat Leydig and Sertoli cells were isolated to examine cell-specific expression, binding, and function of the MIS type II receptor. These studies revealed that this receptor is expressed abundantly in progenitor (21-day) and immature (35-day) Leydig cells as well as in Sertoli cells. Prepubertal progenitor Leydig cells exhibit high affinity (Kd = 15 nM), saturable binding of MIS. No binding, however, is detected with either peripubertal immature Leydig cells or Sertoli cells at either age. Moreover, progenitor, but not immature Leydig cells, respond to MIS by decreasing DNA synthesis. These data demonstrate that functional MIS type II receptors are expressed in progenitor Leydig cells and support the hypothesis that MIS has a direct role in the regulation of postnatal testicular development.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources