Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Dec;89(4):595-602.
doi: 10.1002/jcp.1040890415.

The H+/site ratio of mitochondrial electron transport

The H+/site ratio of mitochondrial electron transport

M D Brand et al. J Cell Physiol. 1976 Dec.

Abstract

The number of H+ ejected during passage of 2e- through each energy-conserving site of the mitochondrial respiratory chain (the H+/site ratio) was measured in three ways. In each case transmembrane movements of endogenous phosphate were minimized. (1) Measurement of the uptake of weak acids during loading of mitochondria with Ca2+ demonstrated that 2.0 weak acid anions were accumulated per Ca2+ ion. Since 1.7 to 2.0 Ca2+ ions were were taken up per site, these data correspond to an H+/site ratio of 3.5 to 4.0. (2) More direct measurement of H+ ejection using the oxygen pulse technique demonstrated that the H+/site ratio was 3.0. In these experiments phosphate movements were prevented by addition of N-ethylmaleimide to inhibit phosphate-hydroxide antiport, by washing the mitochondria to remove endogenous phosphate, or by working at 5 degrees C to reduce the rate of phosphate transport. When phosphate movements were allowed, H+/site ratios of 2.0 were observed. (3) Measurement of the initial steady rates of oxygen consumption and H+ ejection following addition of substrate to aerobic, substrate-limited mitochondria yielded H+/site ratios of 2.0, which were elevated to 4.0 when phosphate transport was prevented as described above. Previous determinations of the H+/site ratio were thus underestimates due to the unrecognized movements of endogenous phosphate; our results show that the H+/site ratio is at least 3.0 andmay be as high as 4.0.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources