Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jun;33(6):1018-25.
doi: 10.1016/S0272-6386(99)70137-X.

Induction of microalbuminuria by l-arginine infusion in healthy individuals: an insight into the mechanisms of proteinuria

Affiliations

Induction of microalbuminuria by l-arginine infusion in healthy individuals: an insight into the mechanisms of proteinuria

E Bello et al. Am J Kidney Dis. 1999 Jun.

Abstract

Despite evidence from individuals with diabetes mellitus or reduced renal mass, the actual relationship between protein- or amino acid-induced changes in renal function and urinary albumin excretion (UAE) is largely unknown in subjects without renal disease. In humans, infusions of l-arginine have been used recently in vascular and renal pathophysiological studies. The present study was undertaken to analyze the mechanisms involved in a particular effect; namely, the behavior of UAE during amino acid loading. A prospective interventional protocol was performed on 10 healthy adults by means of an intravenous infusion of l-arginine. The main results show that l-arginine induced a significant increase in UAE from 13.1 +/- 3.8 before to 53.3 +/- 11.1 microgram/min after the infusion (P < 0.005). This increment was simultaneous to an increase in glomerular filtration rate (GFR) and renal plasma flow (RPF). Furthermore, l-arginine markedly increased the urinary excretion of beta2-microglobulin. UAE correlated significantly with GFR (r = 0. 738; P = 0.014) and RPF (r = 0.942; P < 0.0001), but not with urinary beta2-microglobulin (r = 0.05; P = not significant). Furthermore, marked differences (P = 0.001) were found between the percentage of increase in UAE (306.8% +/- 163.2%) with respect to either albumin filtered load (FLAlb; 57.9% +/- 16.3%) and beta2-microglobulin excretion (1,088.5% +/- 424.6%). No changes were found in vehicle-infused individuals. In conclusion, the present study shows, in controlled conditions, that l-arginine infusion induces a relevant increase in UAE in healthy individuals that significantly exceeds that expected from the increase in GFR alone. The intense and simultaneous increment in beta2-microglobulin excretion strongly suggests that the effect of l-arginine on UAE is, in a relevant part, mediated through a blockade in the tubular protein reabsorption pathways. However, the profound differences observed in the changes induced by l-arginine on UAE and beta2-microglobulin excretion and the differences in the correlation of UAE and beta2-microglobulin with respect to GFR suggest that substantial diversity exists in the mechanisms by which l-arginine affects the renal management of albumin and beta2-microglobulin. These findings are relevant for understanding the renal response to l-arginine and protein/amino acid loads.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources