Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 May;67(5):1254-61.
doi: 10.1016/s0003-4975(99)00156-3.

Endothelium-derived nitric oxide enhances the effect of intraaortic balloon pumping on diastolic coronary flow

Affiliations

Endothelium-derived nitric oxide enhances the effect of intraaortic balloon pumping on diastolic coronary flow

E Toyota et al. Ann Thorac Surg. 1999 May.

Abstract

Background: High shear rate with pulsation is one of the major stimuli for the release of endothelium-derived nitric oxide leading to coronary arteriolar dilation. Intraaortic balloon pumping mechanically enhances shear rate and diastolic-to-systolic flow oscillation. We aimed to evaluate whether or not coronary blood flow augmentation during intraaortic balloon pumping is mediated by coronary arteriolar dilation through endothelium-derived nitric oxide release.

Methods: Using a charge-coupled device intravital videomicroscope, we observed epicardial coronary arterioles (40 to 220 microm in diameter) in anesthetized open-chest dogs (n = 10) during 2:1 mode of intraaortic balloon pumping. Endothelium-derived nitric oxide-mediated vasodilatory effects of intraaortic balloon pumping were evaluated by comparing end-diastolic arteriolar diameters between the coupled beats of on and off intraaortic balloon pumping before and after intracoronary endothelium-derived nitric oxide synthesis inhibition with Nomega-nitro-L-arginine (L-NNA, 2 micromol/min) administration.

Results: Intraaortic balloon pumping increased coronary arteriolar diameters and coronary blood flow by 11.4%+/-1.8% (p < 0.0001) and 33.4%+/-4.1% (p < 0.001), respectively. Vasodilation was greater in small arterioles (<110 microm; 15.4%+/-2.2%) than in large arterioles (> or =110 microm; 4.2%+/-1.2%, p < 0.0001). L-NNA attenuated the intraaortic balloon pumping-induced vasodilation and augmentation of coronary blood flow to 4.6%+/-1.0% (p < 0.001) and to 20.8%+/-2.1%, (p < 0.05), respectively. Attenuation of vasodilatory effect by L-NNA was observed mainly in small arterioles (from 15.4%+/-2.2% to 5.9%+/-1.2%).

Conclusions: Intraaortic balloon pumping augmented coronary blood flow by dilating coronary arterioles in diastole, more significantly in small arterioles than in large arterioles. Endothelium-derived nitric oxide inhibition markedly attenuated these effects. We conclude that, in a canine model, endothelium-derived nitric oxide contributes to mechanical enhancement of the coronary blood flow with diastolic arteriolar vasodilation during intraaortic balloon pumping.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources