Chronic exposure to aluminium impairs the glutamate-nitric oxide-cyclic GMP pathway in the rat in vivo
- PMID: 10355491
- DOI: 10.1016/s0197-0186(99)00010-8
Chronic exposure to aluminium impairs the glutamate-nitric oxide-cyclic GMP pathway in the rat in vivo
Abstract
Aluminium is neurotoxic and is considered a possible etiologic factor in Alzheimer's disease, dialysis syndrome and other neurological disorders. The molecular mechanism of aluminium-induced impairment of neurological functions remains unclear. We showed that aluminium impairs the glutamate-nitric oxide-cGMP pathway in cultured neurons. The aim of this work was to assess by in vivo brain microdialysis whether chronic administration of aluminium in the drinking water (2.5% aluminium sulfate) also impairs the glutamate-nitric oxide-cGMP pathway in the cerebellum of rats in vivo. Chronic exposure to aluminium reduced NMDA-induced increase of extracellular cGMP by ca 50%. The increase in extracellular cGMP induced by the nitric oxide generating agent S-nitroso-N-acetylpenicillamine was higher (240%) in rats treated with aluminium than in controls. Immunoblotting experiments showed that aluminium reduced the cerebellar content of calmodulin and nitric oxide synthase by 34 and 15%, respectively. Basal activity of soluble guanylate cyclase was decreased by 66% in aluminium-treated rats, while the activity after stimulation with S-nitroso-N-acetylpenicillamine was similar to controls. Basal cGMP in the cerebellar extracellular space was decreased by 50% in aluminium-treated rats. These results indicate that chronic exposure to aluminium reduces the basal activity of guanylate cyclase and impairs the glutamate-nitric oxide-cGMP pathway in the animal in vivo.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
