Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jun:122 ( Pt 6):1169-82.
doi: 10.1093/brain/122.6.1169.

Spatial deficits in ideomotor limb apraxia. A kinematic analysis of aiming movements

Affiliations
Free article

Spatial deficits in ideomotor limb apraxia. A kinematic analysis of aiming movements

K Y Haaland et al. Brain. 1999 Jun.
Free article

Abstract

Ideomotor limb apraxia is a classic neurological disorder manifesting as a breakdown in co-ordinated limb control with spatiotemporal deficits. We employed kinematic analyses of simple aiming movements in left hemisphere-damaged patients with and without limb apraxia and a normal control group to examine preprogramming and response implementation deficits in apraxia. Damage to the frontal and parietal lobes was more common in apraxics, but neither frontal nor parietal damage was associated with different arm movement deficits. Limb apraxia was associated with intact preprogramming but impaired response implementation. The response implementation deficits were characterized by spatial but not temporal deficits, consistent with decoupling of spatial and temporal features of movement in limb apraxia. While the apraxics' accuracy was normal when visual feedback was available, it was impaired when visual feedback of either target location or hand position was unavailable. This finding suggests that ideomotor limb apraxia is associated with disruption of the neural representations for the extrapersonal (spatial location) and intrapersonal (hand position) features of movement. The non-apraxic group's normal kinematic performance demonstrates that the deficits demonstrated in the apraxic group are not simply a reflection of left hemisphere damage per se.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms