Genetic analysis of the role of protein kinase C signaling pathways in behaviors by direct gene transfer with HSV-1 vectors
- PMID: 10356988
- DOI: 10.1515/revneuro.1999.10.1.1
Genetic analysis of the role of protein kinase C signaling pathways in behaviors by direct gene transfer with HSV-1 vectors
Abstract
A genetic intervention strategy is described to elucidate the specific biochemical pathways in identified types of neurons that underlie behavioral adaptations. This strategy contains three parts: A Herpes simplex virus (HSV-1) vector is used to obtain localized gene transfer, a cell type-specific promoter is used to target expression to a particular type of neuron, and a constitutively active signal transduction enzyme is expressed to alter neuronal physiology. To enable this approach, a constitutively active protein kinase C (PKC) was developed which causes a long-lasting, activation-dependent increase in neurotransmitter release from cultured sympathetic neurons. This genetic intervention strategy was tested using the nigrostriatal system: Microinjection of HSV-1 vectors that contain the tyrosine hydroxylase promoter targeted expression to dopaminergic nigrostriatal neurons. Expression of the constitutively active PKC in a small percentage of nigrostriatal neurons (approximately 0.1-2%) produced a long-term (> or = 1 month) change in apomorphine-induced rotational behavior, the amount of rotational behavior correlated with the number of affected nigrostriatal neurons, and D2-like dopamine receptor levels were elevated in the striatal regions innervated by the affected nigrostriatal neurons. The strengths and limitations of this genetic intervention strategy are discussed.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources