Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Oct;28(4-6):385-412.
doi: 10.1023/a:1006589819844.

Carbonaceous micrometeorites and the origin of life

Affiliations
Review

Carbonaceous micrometeorites and the origin of life

M Maurette. Orig Life Evol Biosph. 1998 Oct.

Abstract

Giant micrometeorites (sizes ranging from approximately 50 to 500 micrometers), such as those that were first recovered from clean pre-industrial Antarctic ices in December 1987, represent by far the dominant source of extraterrestrial carbonaceous material accreted by the Earth's surface, about 50,000 times the amount delivered by meteorites (sizes > or = a few cm). They correspond to large interplanetary dust particles that survived unexpectedly well their hypervelocity impact with the Earth's atmosphere, contrary to predictions of theoretical models of such impacts. They are related to relatively rare groups of carbonaceous chondrites (approximately 2% of the meteorite falls) and not to the most abundant meteorites (oridinary chondrites and differentiated micrometeorites). About 80% of them appear to be highly unequilibrated fine-grained assemblages of mineral grains, where an abundant carbonaceous component is closely associated on a scale of < or = 0.1 micron to both hydrous and anhydrous minerals, including potential catalysts. These observations suggest that micrometeorites could have functioned as individual microscopic chemical reactors to contribute to the synthesis of prebiotic molecules on the early Earth, about 4 billion years ago. The recent identification of some of their complex organics (amino acids and polycyclic aromatic hydrocarbons), and the observation that they behave as very efficient 'cosmochromatographs', further support this 'early carbonaceous micrometeorite' scenario. Future prospects include identifying the host phases (probably ferrihydrite) of their complex organics, evaluating their catalytic activity, and assessing whether synergetic interactions between micrometeorites and favorable zones of the early Earth (such as submarine hydrothermal vents) accelerated and/or modified such synthesis.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Chem Biol. 1997 Jan;4(1):9-12 - PubMed
    1. Adv Space Res. 1995 Mar;15(3):113-26 - PubMed
    1. Adv Space Res. 1995;16(2):41-9 - PubMed
    1. J Mol Evol. 1984;20(1):52-8 - PubMed
    1. Nature. 1992 Jan 9;355:125-32 - PubMed

Publication types

Substances

LinkOut - more resources