Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jun 1;18(11):3173-85.
doi: 10.1093/emboj/18.11.3173.

RAD53, DUN1 and PDS1 define two parallel G2/M checkpoint pathways in budding yeast

Affiliations

RAD53, DUN1 and PDS1 define two parallel G2/M checkpoint pathways in budding yeast

R Gardner et al. EMBO J. .

Abstract

Eukaryotic checkpoint genes regulate multiple cellular responses to DNA damage. In this report, we examine the roles of budding yeast genes involved in G2/M arrest and tolerance to UV exposure. A current model posits three gene classes: those encoding proteins acting on damaged DNA (e.g. RAD9 and RAD24), those transducing a signal (MEC1, RAD53 and DUN1) or those participating more directly in arrest (PDS1). Here, we define important features of the pathways subserved by those genes. MEC1, which we find is required for both establishment and maintenance of G2/M arrest, mediates this arrest through two parallel pathways. One pathway requires RAD53 and DUN1 (the 'RAD53 pathway'); the other pathway requires PDS1. Each pathway independently contributes approximately 50% to G2/M arrest, effects demonstrable after cdc13-induced damage or a double-stranded break inflicted by the HO endonuclease. Similarly, both pathways contribute independently to tolerance of UV irradiation. How the parallel pathways might interact ultimately to achieve arrest is not yet understood, but we do provide evidence that neither the RAD53 nor the PDS1 pathway appears to maintain arrest by inhibiting adaptation. Instead, we think it likely that both pathways contribute to establishing and maintaining arrest.

PubMed Disclaimer

Similar articles

Cited by

References

    1. EMBO J. 1998 Oct 1;17(19):5525-8 - PubMed
    1. EMBO J. 1998 Oct 1;17(19):5679-88 - PubMed
    1. Mol Cell. 1998 Sep;2(3):329-40 - PubMed
    1. EMBO J. 1998 Dec 15;17(24):7239-49 - PubMed
    1. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13760-5 - PubMed

Publication types

MeSH terms