Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Apr;98(1-2):109-17.
doi: 10.1016/s0009-3084(99)00023-7.

Diacylglycerol kinase in the central nervous system--molecular heterogeneity and gene expression

Affiliations
Review

Diacylglycerol kinase in the central nervous system--molecular heterogeneity and gene expression

K Goto et al. Chem Phys Lipids. 1999 Apr.

Abstract

Diacylglycerol (DAG) is one of the important second messengers, which serves as an activator of protein kinase C (PKC). DAG kinase (DGK) phosphorylates DAG to generate phosphatidic acid, thus DGK is considered to be a regulator of PKC activity through attenuation of DAG. Recent studies have revealed molecular structures of several DGK isozymes from mammalian species, and showed that most of the isozymes are expressed in the brain in various amounts. We have cloned four DGK isozyme cDNAs from rat brain library (DGK alpha, -beta, -gamma, and -zeta) (previously also designated DGK-I, -II, -III, and -IV, respectively) and examined their mRNA expressions in rat brain by in situ hybridization histochemistry. Interestingly, it is revealed that the mRNA for each isozyme is expressed in a distinct pattern in the brain; DGK alpha is expressed in oligodendrocytes, glial cells that form myelin; DGK beta in neurons of the caudate-putamen; DGK gamma predominantly in the cerebellar Purkinje cells; and DGK zeta in the cerebellar and cerebral cortices. Molecular diversity and distinct expression patterns of DGK isozymes suggest a physiological importance for the enzyme in brain function. Furthermore, functional implications of these DGK isozymes are briefly discussed.

PubMed Disclaimer

Publication types

LinkOut - more resources