Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jun 8;38(23):7517-23.
doi: 10.1021/bi9830718.

Differential signaling of insulin and IGF-1 receptors to glycogen synthesis in murine hepatocytes

Affiliations

Differential signaling of insulin and IGF-1 receptors to glycogen synthesis in murine hepatocytes

B C Park et al. Biochemistry. .

Abstract

We have used SV40-transformed hepatocytes from insulin receptor-deficient mice (-/-) and normal mice (WT) to investigate the different abilities of insulin and IGF-1 receptors to stimulate glycogen synthesis. We report that insulin receptors are more potent than IGF-1 receptors in stimulating glycogen synthesis. Both receptors stimulate glycogen synthesis in a PI 3-kinase-dependent manner, but only the effect of insulin receptors is partially rapamycin-dependent. Insulin and IGF-1 receptors activate Akt to a similar extent, whereas GSK-3 inactivation in response to IGF-1 is considerably lower in both -/- and WT cells, compared to the effect of insulin in WT cells. The findings indicate that (i) the potency of insulin and IGF-1 receptors in stimulating glycogen synthesis correlates with their ability to inactivate GSK-3, (ii) the extent of GSK-3 inactivation does not correlate with the extent of Akt activation mediated by insulin or IGF-1 receptors, indicating that the effect of insulin on GSK-3 requires additional kinases, and (iii) the pathways required for insulin stimulation of glycogen synthesis in mouse hepatocytes are PI 3-kinase-dependent and rapamycin-sensitive.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources