Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Mar;18(3):206-17.
doi: 10.1109/42.764891.

Automated extraction and variability analysis of sulcal neuroanatomy

Affiliations
Review

Automated extraction and variability analysis of sulcal neuroanatomy

G Le Goualher et al. IEEE Trans Med Imaging. 1999 Mar.

Abstract

Systematic mapping of the variability in cortical sulcal anatomy is an area of increasing interest which presents numerous methodological challenges. To address these issues, we have implemented sulcal extraction and assisted labeling (SEAL) to automatically extract the two-dimensional (2-D) surface ribbons that represent the median axis of cerebral sulci and to neuroanatomically label these entities. To encode the extracted three-dimensional (3-D) cortical sulcal schematic topography (CSST) we define a relational graph structure composed of two main features: vertices (representing sulci) and arcs (representing the relationships between sulci). Vertices contain a parametric representation of the surface ribbon buried within the sulcus. Points on this surface are expressed in stereotaxic coordinates (i.e., with respect to a standardized brain coordinate system). For each of these vertices, we store length, depth, and orientation as well as anatomical attributes (e.g., hemisphere, lobe, sulcus type, etc.). Each arc stores the 3-D location of the junction between sulci as well as a list of its connecting sulci. Sulcal labeling is performed semiautomatically by selecting a sulcal entity in the CSST and selecting from a menu of candidate sulcus names. In order to help the user in the labeling task, the menu is restricted to the most likely candidates by using priors for the expected sulcal spatial distribution. These priors, i.e., sulcal probabilistic maps, were created from the spatial distribution of 34 sulci traced manually on 36 different subjects. Given these spatial probability maps, the user is provided with the likelihood that the selected entity belongs to a particular sulcus. The cortical structure representation obtained by SEAL is suitable to extract statistical information about both the spatial and the structural composition of the cerebral cortical topography. This methodology allows for the iterative construction of a successively more complete statistical models of the cerebral topography containing spatial distributions of the most important structures, their morphometrics, and their structural components.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms