Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 May;27(5):313-27.
doi: 10.2165/00007256-199927050-00003.

Oxygen uptake kinetics during exercise

Affiliations
Review

Oxygen uptake kinetics during exercise

F Xu et al. Sports Med. 1999 May.

Abstract

The characteristics of oxygen uptake (VO2) kinetics differ with exercise intensity. When exercise is performed at a given work rate which is below lactate threshold (LT), VO2 increases exponentially to a steady-state level. Neither the slope of the increase in VO2 with respect to work rate nor the time constant of VO2 responses has been found to be a function of work rate within this domain, indicating a linear dynamic relationship between the VO2 and the work rate. However, some factors, such as physical training, age and pathological conditions can alter the VO2 kinetic responses at the onset of exercise. Regarding the control mechanism for exercise VO2 kinetics, 2 opposing hypotheses have been proposed. One of them suggests that the rate of the increase in VO2 at the onset of exercise is limited by the capacity of oxygen delivery to active muscle. The other suggests that the ability of the oxygen utilisation in exercising muscle acts as the rate-limiting step. This issue is still being debated. When exercise is performed at a work rate above LT, the VO2 kinetics become more complex. An additional component is developed after a few minutes of exercise. The slow component either delays the attainment of the steady-state VO2 or drives the VO2 to the maximum level, depending on exercise intensity. The magnitude of this slow component also depends on the duration of the exercise. The possible causes for the slow component of VO2 during heavy exercise include: (i) increases in blood lactate levels; (ii) increases in plasma epinephrine (adrenaline) levels; (iii) increased ventilatory work; (iv) elevation of body temperature; and (v) recruitment of type IIb fibres. Since 86% of the VO2 slow component is attributed to the exercising limbs, the major contributor is likely within the exercising muscle itself. During high intensity exercise an increase in the recruitment of low-efficiency type IIb fibres (the fibres involved in the slow component) can cause an increase in the oxygen cost of exercise. A change in the pattern of motor unit recruitment, and thus less activation of type IIb fibres, may also account for a large part of the reduction in the slow component of VO2 observed after physical training.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Exerc Sport Sci Rev. 1996;24:35-71 - PubMed
    1. J Appl Physiol (1985). 1993 Nov;75(5):1962-7 - PubMed
    1. J Appl Physiol Respir Environ Exerc Physiol. 1983 May;54(5):1306-13 - PubMed
    1. Med Sci Sports Exerc. 1986 Jun;18(3):360-8 - PubMed
    1. J Appl Physiol (1985). 1991 Dec;71(6):2099-106 - PubMed