Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 May;437(6):888-94.
doi: 10.1007/s004240050859.

Complete reversal of run-down in rabbit cardiac Ca2+ channels by patch-cramming in Xenopus oocytes; partial reversal by protein kinase A

Affiliations

Complete reversal of run-down in rabbit cardiac Ca2+ channels by patch-cramming in Xenopus oocytes; partial reversal by protein kinase A

J L Costantin et al. Pflugers Arch. 1999 May.

Abstract

The rabbit cardiac Ca2+ channel (alpha1C) expressed in Xenopus oocytes exhibited a complete run-down of ionic currents when cell-attached patches were excised. The alpha1C channel was expressed alone or was coexpressed with the accessory beta2a or beta1b subunit. The catalytic subunit of protein kinase A (PKAc) and MgATP were capable of delaying the run-down of single-channel currents. In 33% of the alpha1C patches, and 26% of the alpha1C+beta2a patches, inclusion of PKAc in the bath solution delayed the run-down for a maximum of 20 min. In experiments where PKAc in the bath was not sufficient to delay the run-down of channel activity, insertion of the patch back into the oocyte (patch-cramming) could restore channel activity. Gating currents were also measured in the alpha1C+beta1b channel and were not subject to any run-down, even after the complete run-down of ionic currents. The results presented here reveal that PKAc is capable of delaying the run-down of currents in a subset of patches. The patch-cramming results suggest that a cytoplasmic factor, in addition to phosphorylation of the channel (by PKAc), may be involved in the maintenance of channel activity.

PubMed Disclaimer

LinkOut - more resources