Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 May;23(5):850-5.

Effect of voltage-dependent calcium channel blockers on ethanol-induced beta-endorphin release from hypothalamic neurons in primary cultures

Affiliations
  • PMID: 10371405

Effect of voltage-dependent calcium channel blockers on ethanol-induced beta-endorphin release from hypothalamic neurons in primary cultures

A De et al. Alcohol Clin Exp Res. 1999 May.

Abstract

The voltage-dependent calcium channel (VDCC) has been shown to mediate calcium entry into neurons that regulates neurotransmission in many neuronal cells. Four major types of VDCCs (three high-voltage-activated L-, N-, and P-types and one low-voltage-activated T-type) have been identified in neurons. Involvement of the VDCC in ethanol-stimulated beta-endorphin (beta-EP) release from hypothalamic neurons has not been studied. In the present study, the role of VDCC on basal and ethanol-induced beta-EP release was determined by using rat fetal hypothalamic cells in primary cultures. Treatments with a 50 mM dose of ethanol for 3 hr increased immunoreactive beta-EP (IR-beta-EP) release from hypothalamic cells maintained in cultures for 9 days. Ethanol-induced IR-beta-EP release was inhibited by a P/Q-type channel blocker omega-agatoxin TK (0.1-1 microM), an N-type channel blocker omega-conotoxin (0.1-1 microM), an L-type blocker nifedipine (1-10 microM), and a T-type blocker flunarizine (1-10 microM). The minimal effective doses of these blockers that blocked the ethanol response produced no significant effects on basal release of IR-beta-EP; neither did these doses of the blockers produce any significant effects on cell viability. These results suggest that ethanol-stimulated IR-beta-EP release is regulated by extracellular calcium involving P-, N-, L- and T-type channels.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources