Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 May 28:871:293-312.
doi: 10.1111/j.1749-6632.1999.tb09193.x.

The vestibular cortex. Its locations, functions, and disorders

Affiliations
Review

The vestibular cortex. Its locations, functions, and disorders

T Brandt et al. Ann N Y Acad Sci. .

Abstract

Evidence is presented that the multisensory parieto-insular cortex is the human homologue of the parieto-insular vestibular cortex (PIVC) in the monkey and is involved in the perception of verticality and self-motion. Acute lesions (patients with middle cerebral artery infarctions) of this area caused contraversive tilts of perceived vertical, body lateropulsion, and, rarely, rotational vertigo. Brain activation studies using positron emission tomography or functional magnetic resonance tomography showed that PIVC was activated by caloric irrigation of the ears or by galvanic stimulation of the mastoid. This indicates that PIVC receives input from both the semicircular canals and otoliths. PIVC was also activated during small-field optokinetic stimulation, but not when the nystagmus was suppressed by fixation. Activation of vestibular cortex areas, visual motion-sensitive areas, and ocular motor areas exhibited a significant right-hemispheric dominance. The vestibular cortex intimately interacts with the visual cortex to match the two 3-D orientation maps (perception of verticality, room-tilt illusion) and mediates self-motion perception by means of a reciprocal inhibitory visual-vestibular interaction. This mechanism of an inhibitory interaction allows a shift of the dominant sensorial weight during self-motion perception from one sensory modality (visual or vestibular) to the other, depending on which mode of stimulation prevails: body acceleration (vestibular input) or constant velocity motion (visual input).

PubMed Disclaimer

MeSH terms

LinkOut - more resources