In vivo ac impedance spectroscopy of human skin. Theory and problems in monitoring of passive percutaneous drug delivery
- PMID: 10372169
- DOI: 10.1111/j.1749-6632.1999.tb09468.x
In vivo ac impedance spectroscopy of human skin. Theory and problems in monitoring of passive percutaneous drug delivery
Abstract
The use of impedance spectroscopy to evaluate transdermal drug delivery is discussed and new techniques and protocols are suggested to avoid or minimize potential problems. A novel multichannel impedance analyzer, exploiting the advantages of the "three-electrode" configuration, was employed to measure the effects of differing topically applied concentrations of the percutaneous local anesthetic amethocaine on the electrical properties of the treated skin sites. Each measured impedance spectrum was modeled by an equivalent circuit consisting of a resistor in series with the parallel combination of a pseudocapacitance and a resistor. Due to differences in skin sites and to the finite times taken to apply each electrode, it was difficult to satisfactorily compare and contrast the results obtained from adjacent skin sites. Normalization of data highlighted differences in relative impedance changes and aided the meaningful comparison of treated skin sites.
Similar articles
-
Finite element modeling of electrode-skin contact impedance in electrical impedance tomography.IEEE Trans Biomed Eng. 1993 Apr;40(4):335-43. doi: 10.1109/10.222326. IEEE Trans Biomed Eng. 1993. PMID: 8375870
-
Changes in skin A.C. impedance parameters in vivo during the percutaneous absorption of local anesthetics.Pharm Res. 1999 Mar;16(3):459-62. doi: 10.1023/a:1011994206954. Pharm Res. 1999. PMID: 10213380 No abstract available.
-
Newly explored electrical properties of normal skin and special skin sites.Biomed Tech (Berl). 2004 May;49(5):117-24. doi: 10.1515/BMT.2004.024. Biomed Tech (Berl). 2004. PMID: 15212196
-
Mathematical models to describe iontophoretic transport in vitro and in vivo and the effect of current application on the skin barrier.Adv Drug Deliv Rev. 2013 Feb;65(2):315-29. doi: 10.1016/j.addr.2012.04.012. Epub 2012 May 22. Adv Drug Deliv Rev. 2013. PMID: 22626977 Review.
-
A risk-benefit assessment of topical percutaneous local anaesthetics in children.Drug Saf. 1997 Apr;16(4):279-87. doi: 10.2165/00002018-199716040-00005. Drug Saf. 1997. PMID: 9113495 Review.
Cited by
-
Electrical Bioimpedance Analysis for Evaluating the Effect of Pelotherapy on the Human Skin: Methodology and Experiments.Sensors (Basel). 2023 Apr 25;23(9):4251. doi: 10.3390/s23094251. Sensors (Basel). 2023. PMID: 37177455 Free PMC article.
-
Skin membrane electrical impedance properties under the influence of a varying water gradient.Biophys J. 2013 Jun 18;104(12):2639-50. doi: 10.1016/j.bpj.2013.05.008. Biophys J. 2013. PMID: 23790372 Free PMC article.
-
Optimization of impedance spectroscopy techniques for measuring cutaneous micropore formation after microneedle treatment in an elderly population.Pharm Res. 2014 Dec;31(12):3478-86. doi: 10.1007/s11095-014-1435-y. Epub 2014 Jun 20. Pharm Res. 2014. PMID: 24947437
-
In vivo electrical characteristics of human skin, including at biological active points.Med Biol Eng Comput. 2000 Sep;38(5):507-11. doi: 10.1007/BF02345745. Med Biol Eng Comput. 2000. PMID: 11094806
-
Diclofenac delays micropore closure following microneedle treatment in human subjects.J Control Release. 2012 Oct 28;163(2):220-9. doi: 10.1016/j.jconrel.2012.08.015. Epub 2012 Aug 21. J Control Release. 2012. PMID: 22929967 Free PMC article. Clinical Trial.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources