Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Apr;18(2):189-96.
doi: 10.1016/s0945-053x(99)00011-6.

Collagen II containing a Cys substitution for Arg-alpha1-519. Analysis by atomic force microscopy demonstrates that mutated monomers alter the topography of the surface of collagen II fibrils

Affiliations

Collagen II containing a Cys substitution for Arg-alpha1-519. Analysis by atomic force microscopy demonstrates that mutated monomers alter the topography of the surface of collagen II fibrils

E Adachi et al. Matrix Biol. 1999 Apr.

Abstract

A recombinant human procollagen II was prepared that contained a substitution of Cys for Arg at alpha1-519 and that was found in five families with early onset generalized osteoarthritis with or without features of a mild chondrodysplasia. Previously, the presence of mutated monomers in mixtures with wildtype collagen II was shown to increase the lag period for fibril assembly. Also, the fibrils were more loosely packed and some thick fibrils lacked a D-periodic banding pattern. Here we re-examined the fibrils using a combination of transmission electron microscopy and atomic force microscopy. The presence of the mutated monomers increased the diameter of the thin filaments that were consistently formed in association with the thick fibrils of collagen II. In addition, the presence of the mutated monomers increased the depth of the gap regions in all fibrils with a distinct D-periodic banding pattern. The results, therefore, may indicate that the mutated monomers formed two or three additional outer layers of monomers in 0D-period staggers on the surface of the fibrils. Apparently, the mutated monomers were bound on the surface through intermolecular disulfide bonds.

PubMed Disclaimer

Publication types

LinkOut - more resources