Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jun 22;99(24):3118-24.
doi: 10.1161/01.cir.99.24.3118.

Iron-dependent human platelet activation and hydroxyl radical formation: involvement of protein kinase C

Affiliations

Iron-dependent human platelet activation and hydroxyl radical formation: involvement of protein kinase C

D Praticó et al. Circulation. .

Abstract

Background: Iron is an important modulator of lipid peroxidation, and its levels have been associated with the progression of atherosclerosis. Little is known about the possibility that this metal, when released from tissue stores, may modulate the reactivity of blood cell components, in particular platelets. Therefore, we investigated a possible link between iron, oxygen free radical formation, and platelet function.

Methods and results: Human whole blood was stimulated with collagen 2 micrograms/mL, and an irreversible aggregation with thromboxane (Tx)B2 formation was observed (15+/-4 versus 130+/-10 ng/mL). Deferoxamine (DSF), a specific iron chelator, and catalase, an H2O2 scavenger, inhibited collagen-induced whole-blood aggregation. The aggregation was accompanied by an increase in hydroxyl radical (OH.) levels (30+/-8 versus 205+/-20 nmol/L dihydroxybenzoates), which were reduced by DSF and by 2 specific OH. scavengers, mannitol and deoxyribose. Iron (Fe2+) dose-dependently induced platelet aggregation, TxB2 formation (6+/-2 versus 135+/-8 ng/mL), and protein kinase C (PKC) translocation from the cytosol to the cell membrane when added to platelets that have been primed with a low concentration of collagen (0.2 micrograms/mL). In the same system, an increase in OH. levels was observed (37+/-12 versus 230+/-20 nmol/L dihydroxybenzoates). Mannitol and deoxyribose, but not urea, were able to reduce OH. formation, PKC activation, and platelet aggregation. Selective inhibition of PKC activity by GF 109203X prevented iron-dependent platelet aggregation without influencing OH. production.

Conclusions: The present study shows that iron can directly interact with human platelets, resulting in their activation. Its action is mediated by OH. formation and involves PKC activity. Our findings provide an additional contribution to the understanding of the mechanism(s) by which iron overload might promote atherosclerosis and coronary artery disease.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources