Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1999 May;18(3):285-92.
doi: 10.1046/j.1365-313x.1999.00452.x.

A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass

Affiliations
Free article
Comparative Study

A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass

I Cummins et al. Plant J. 1999 May.
Free article

Abstract

Black-grass (Alopecurus myosuroides) is a major weed of wheat in Europe, with several populations having acquired resistance to multiple herbicides of differing modes of action. As compared with herbicide-susceptible black-grass, populations showing herbicide cross-resistance contained greatly elevated levels of a specific type I glutathione transferase (GST), termed AmGST2, but similar levels of a type III GST termed AmGST1. Following cloning and expression of the respective cDNAs, AmGST2 differed from AmGST1 in showing limited activity in detoxifying herbicides but high activities as a glutathione peroxidase (GPOX) capable of reducing organic hydroperoxides. In contrast to AmGST2, other GPOXs were not enhanced in the herbicide-resistant populations. Treatment with a range of herbicides used to control grass weeds in wheat resulted in increased levels of hydroperoxides in herbicide-susceptible populations but not in herbicide-resistant plants, consistent with AmGST2 functioning to prevent oxidative injury caused as a primary or secondary effect of herbicide action. Increased AmGST2 expression in black-grass was associated with partial tolerance to the peroxidizing herbicide paraquat. The selective enhancement of AmGST2 expression resulted from a constitutively high expression of the respective gene, which was activated in herbicide-susceptible black-grass in response to herbicide safeners, dehydration and chemical treatments imposing oxidative stress. Our results provide strong evidence that GSTs can contribute to resistance to multiple herbicides by playing a role in oxidative stress tolerance in addition to detoxifying herbicides by catalysing their conjugation with glutathione.

PubMed Disclaimer

Publication types

LinkOut - more resources